top of page

Semestre 2022-2

​

Ecuaciones Diferenciales Parciales 

Posgrado en Ciencias Matemáticas (UNAM)

​

Temario

​

Online classes

Introduction and general information

Section I: First order PDEs

Transport equation    Method of characteristics    Quasilinear first order PDEs    Loss of regularity    Multi-d and fully nonlinear PDEs

Introduction to scalar conservation laws    Rankine-Hugoniot conditions   Entropy conditions

Section II: Laplace's equation

Laplace and Poisson equations   Fundamental solution of Laplace's equation    Solving Poisson's equation   Mean-value formulas

Properties of harmonic functions  Properties of harmonic functions II  Green's function  Exterior domains. Laplace-Dirichlet Problem

Section III: Heat (or diffusion) equation

Derivation of heat equation and fundamental solution    Cauchy problem and Fourier Transform    Nonhomogeneous problem  

Mean-value formula and maximum principle   Properties and uniqueness of solutions  Energy methods and separation of variables

Separation of variables and IBVP    Viscous Burgers equation

Section IV: Wave equation

Wave equation and d'Alembert's formula  A reflection method. Spherical means   Kirchhoff's and Poisson's formulas

Solution for any dimensions   Nonhomogeneous problem. Energy methods    Separation of variables     Second Order Linear PDEs

​

Tareas

Tarea 1: First order PDEs

Tarea 2: Laplace's equation

Tarea 3: Heat (or diffusion) equation

Tarea 4: Wave equation

​

bottom of page