top of page

Semestre 2021-2

 

Ecuaciones Diferenciales Parciales 

Posgrado en Ciencias Matemáticas (UNAM)

​

Online classes

Introduction and General Information   

Section I: First order PDEs

Transport Equation    Method of Characteristics I    Method of Characteristics II: Quasi-linear first order PDEs      

Method of Characteristic III: loss of regularity   Method of characteristics in dimension n>2. Fully nonlinear equations

Scalar conservation laws I   Scalar conservation laws II: Rankine-Hugoniot condition   Scalar conservation laws III: entropy condition

Section II: Laplace's equation

Laplace and Poisson equations    Mean-value formulas    Properties of harmonic functions I    Properties of harmonic functions II

Green's function   Exterior domains. Perron method. Dirichlet's principle    Weak solutions for elliptic equations

Section III: Heat (or diffusion) equation

Derivation of heat equation and fundamental solution   Cauchy problem and Fourier Transform

Nonhomogeneous problem and Duhamel's principle   Mean-value formula and maximum principle   Uniqueness for IBVP and IVP

Energy methods. Separation of variables I   Separation of variables II   Reaction-Diffusion equations    Viscous Burgers equation

Section IV: wave equation

Wave equation and d'Alembert's formula   A reflection method. Spherical means  Kirchhoff’s and Poisson's formulas

Solutions for general dimensions   Nonhomogeneous problem. Energy methods   Separation of variables  Second Order Linear PDEs

​

Tareas

Tarea 1: First order PDEs   Solutions

Tarea 2: Laplace's equation  Solutions

Tarea 3: Heat (or diffusion) equation  Solutions

Tarea 4: Wave equation   Solutions

bottom of page